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ABSTRACT

The Discrete Logarithm Problem (DLP) is a fundamental cryptographic primitive.
The DLP is defined for any cyclic group, specifically finite fields, whether the integers
modulo a prime p or a polynomial field of characteristic p modulo some irreducible poly-
nomial f(x). For polynomial fields over a finite field, also known as Galois fields, the DLP
can be viewed as finding a solution to the equation 1 + xi = xj for arbitrary values of i
(modulo some primitive polynomial). Solutions are (relatively) easy to find for trinomials
and these would be the easiest polynomials to implement in hardware. However, primitive
trinomials do not exist for all degrees.

Primitive polynomials are irreducible polynomials with an associated primitive root
α that is a generator of the multiplicative group. Thus the generator α generates all nonzero
2n − 1 elements of a Galois field whose base field is the integers modulo two. Primitive
polynomials over the field of two elements, or GF (2), have important applications in cryp-
tology and coding theory.

This thesis investigates properties of polynomials with more than three terms where
all but one term is a row of Pascal’s triangle modulo two. In other words we define a certain
class of polynomials by f(x) = xn+ p(x), where p(x) is a row of Pascal’s triangle modulo
two. This thesis shows that some of these polynomials, which are not trinomials, also
have “easy” solutions. We observe that for a polynomial to have an associated primitive
element, there are definite restrictions on the degree of the polynomial using particular rows
of Pascal’s triangle.
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I. INTRODUCTION

Digital communications are now commonplace, if not essential, in our day to day
lives. The average user takes for granted the inner workings of their computer systems.
One feature in particular is random-number generation, which computer software systems
utilize in cryptographic library files. The simplest and most efficient method for random-
number generation is via a maximum period Linear-Feedback Shift Register (LFSR). The
authoritative source on the topic is Shift Register Sequences by Solomon W. Golomb [1].
These pseudo-random sequences, also called m-sequences, have the needed randomness
properties of balance, runs, and correlation. Applications of LFSR’s range from stream
ciphers to scrambling sequences used by cable television, satellite communications and
cell-phones. Each m-sequence is uniquely determined by a primitive polynomial whose
coefficients are elements of some prime sub-field, p. We call this subfield the Galois field
with p elements, denoted by GF (p). We restrict our attention to the case p = 2 in this
thesis. These polynomials are useful for a wide variety of applications such as random-
number generators, stream ciphers, and linear code generators.

Specifically, primitive polynomials are essential to Error Checking and Correcting
(ECC) Hamming Codes and the Advanced Encryption System (AES) [2]. One area of
particular interest to the Cryptologic and Coding communities is the Discrete Logarithm
Problem (DLP) [3]. While logarithms are straightforward to find over the real numbers, the
DLP looks for solutions to the following equation modulo some polynomial f(x) whose
coefficients are taken modulo some prime p. So we define the DLP over GF (2n) in the
following way; for a primitive polynomial f(x) of degree n with root α, an integer i, and
the relation 1 + xi = xj , solve for j in a computationally feasible amount of time. This
relation implies that the polynomial g(x) = xj + xi + 1 is a trinomial multiple of f(x),
or that f(x) divides g(x). Because α is a cyclic generator of the multiplicative group
G = GF (2n) = {αk|0 ≤ k < |G|}, then for every αi in G, there exists a unique αj ,
where i < j that satisfies the above relation. The difficulty of the problem is finding a
computationally feasible algorithm that finds j in terms of i, without generating the entire
field. One method is to compute Zech’s logarithm table for GF (2n) [3], also referred to as
a table of Shift-and-Add (SAA) pairs [4].
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If we have a primitive polynomial of degree n over GF (2) with only three terms,
then the polynomial itself defines an entry in the SAA table. The occurrence of primitive
trinomials for an arbitrary degree n is infrequent but a great amount of research exists on
primitive trinomials [5, 6, 7]. Primitive pentanomials are more pervasive than primitive
trinomials. Thus we investigate pentanomials and higher term polynomials of the form
f(x) = xn + p(x), where p(x) is a row of Pascal’s triangle modulo two. The motivation
for requiring that p(x) be a row of Pascal’s triangle is that for such polynomials, p(x) =

(x+1)k, where k is the particular row of Pascal’s triangle with the coefficients taken modulo
two. So we can rewrite f(x) as xn + (x + 1)k, which appears to provide a possible SAA
pair. As an example, consider the primitive polynomial f(x) = x7 + x3 + x2 + x + 1

of degree 7 over GF (2) with root α. We can rewrite the equation in the desired form
f(x) = x7 + (x+ 1)3. If f(x) is primitive, which in this case we know to be true, then we
can manipulate the equation using the fact that α27−1 = α0 = 1, which follows from the
fact that α is a cyclic generator of the multiplicative group with a period of 27−1 = 127. So
if we can find a ≡ 3−1 (mod 127), then we would find the first SAA pair. Since 3−1 ≡ 85

(mod 127), we find the solution to the SAA pair by

(α + 1)3×3−1

= α7×3−1 (mod 127)

α + 1 = α7×85 (mod 127) = α87

Thus (1, 87) is a SAA pair that corresponds to the exponents α0 + α1 = α87, and f(x)

divides the polynomial x87 + x + 1. This provides a step toward a solution to a specific
DLP in the field GF (2n) characterized by the specific polynomial f(x).

This thesis investigates properties of polynomials of the form f(x) = xn + p(x).
We define minimal conditions that the polynomial must satisfy if it is to be primitive. We
also define these polynomials as row k Pascal polynomials, where k is the corresponding
row of Pascal’s triangle. Chapter II provides the necessary background in Number Theory,
Group Theory, Field Theory, and Galois Theory. The reader versed in these areas may wish
to skip directly to the problem statement beginning in Chapter III.
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II. BACKGROUND AND REVIEW

Before beginning a discussion of the problem we investigate, we present some basic
definitions and theorems. This information is available in any standard algebra text, such as
Beachy and Blair’s Abstract Algebra [8], or number theory text, such as Rosen’s Elemen-

tary Number Theory [9]. When discussing groups and fields, it should be understood that
this paper is only concerned with finite fields. It is also assumed that the reader is familiar
with common mathematical, logical, and set notation.

A. NUMBER THEORY

An integer a is called a multiple of a non-negative integer b if a = bq for some
integer q. We also say that b is a divisor, or factor of a denoted by b|a [8]. Given two
integers a and b, not both 0, there exists a positive integer d such that: (i) d is a divisor
of both a and b, and (ii) any divisor of both a and b is also a divisor of d. This greatest
common divisor of a and b is denoted by gcd(a, b) or simply (a, b). If (a, b) = 1, then a
and b are said to be relatively prime. If p is a prime number then (a, p) = 1 for all positive
integers a less than p [8, 9].

With the notion of divisibility, it is useful to define a relationship among integers
with equal remainders when divided by an integer n. For any positive integer n, the integers
a and b are congruent modulo n if they have the same remainder when divided by n.
Congruence is denoted by writing a ≡ b (mod n). An immediate consequence of this
definition is that two integers a and b are congruent modulo n if and only if n divides their
difference a − b, denoted n|(a − b) ⇐⇒ a ≡ b(modn) [8, 9]. Also, if n divides a then a
is congruent to zero modulo n.

Every integer has at least two factors, itself and one. If an integer is prime, then
these are its only factors. If an integer has factors other than itself and one, then we can
further decompose these factors into smaller factors until we have a prime factorization of
the integer. The Fundamental Theorem of Arithmetic states that every integer is uniquely
expressible as a product of its prime factors. Given a positive integer n, let the prime
factorization of n be denoted by

n =
k∏
i=1

pαi
i .

3



Euler’s Totient Function, commonly referred to as Euler’s Phi Function [8, 9] gives the
number of integers less than or equal to n which are relatively prime to n, and is denoted
by

φ(n) = n
k∏
i=1

(
1− 1

pi

)
=

k∏
i=1

(
pαi
i − p

αi−1
i

)
.

Euler’s Theorem provides a useful relationship between the congruences of an integer n
and the Phi Function. If a and n are integers relatively prime to each other, then aφ(n) ≡ 1

(mod n) [8, 9]. A corollary to Euler’s Theorem provides a simple proof of Fermat’s Little
Theorem. If p is a prime, then for any integer a relatively prime to p,

ap−1 ≡ 1 (mod p),

ap−1 − 1 ≡ 0 (mod p)

ap ≡ a (mod p), even if a = 0.

This last congruence holds even if (a, p) = p [8, 9]. Since this thesis investigates the
properties of polynomials based upon Pascal’s triangle, we now define how Pascal’s triangle
is derived from the next few definitions and identities. Given two non-negative integers n
and i, the binomial coefficient

(
n
i

)
(read “n choose i”) is defined by(
n

i

)
=

n!

i!(n− i)!
,

for all i such that 0 ≤ i ≤ n. Otherwise
(
n
i

)
is equal to zero [9]. Pascal’s Identity defines a

recurrence between binomial coefficients. Let n and i be positive integers with n ≥ i, then(
n

i

)
=

(
n− 1

i

)
+

(
n− 1

i− 1

)
[9].

The Pascal triangle is a table of the binomial coefficients where
(
n
i

)
is the (i+ 1)st

number in the (n + 1)st row. The first eight rows of Pascal’s triangle are listed in Figure 1
[9].

Note that the exterior numbers in the triangle are all ones and the number of terms in
each row is equal to one more than the row number. To find an interior number, simply add
the two numbers in the positions above and to the left and right of the position being filled
(as in the shaded figure above). By Pascal’s Identity, this yields the appropriate integer [9].

4
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4 6 4
10 10

6 20 6

1
1 1

1 1
1 3 3 1

1 1
1 5 5 1

1 15 15 1
1 7 21 35 35 21 7 1

Figure 1. Pascal’s triangle

Later we want to observe the rows of Pascal’s triangle modulo two. Figure 2 shows
the coefficients reduced modulo two.

0

0 0 0
0 0

0 0 0

1
1 1

1 1
1 1 1 1

1 1
1 1 1 1

1 1 1 1
1 1 1 1 1 1 1 1

Figure 2. Pascal’s triangle modulo two

Again, the exterior numbers in the triangle are all 1 and the number of terms in each row
equal one more than the row number. To find an interior number, again add the two numbers
in the positions above and to the left and right of the position being filled reducing the
sum modulo two. Otherwise, we could compute the standard Pascal triangle and reduce
each of the entries modulo two when we arrive at the desired row. Considering memory
and computational requirements, the second method is not as efficient as the first where
reduction is performed at each row. In fact the Exclusive OR operation replaces the addition
and reduction modulo two with one logical gate.

Pascal’s Identity and Pascal’s triangle combine to form the Binomial Theorem for
polynomials. We provide a short combinatorial proof of the Binomial Theorem. The in-
ductive proof can be found in Rosen’s Number Theory text [9].
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Theorem II.1 (Binomial Theorem): Given two real numbers a and b and any
positive integer n, then

(a+ b)n =
n∑
i=0

(
n

i

)
an−ibi

Proof (Binomial Theorem). Consider how to get a term of the form an−ibi from the product
of n terms of the form (a+ b):

(a+ b)n = (a+ b)(a+ b) · · · (a+ b).

We could choose the b’s from any i number of the n factors. There are (n − i) factors
remaining to choose the a’s from. The number of ways to choose i objects from a collection
of n objects without replacement, where order is not important, is simply

(
n
i

)
. Thus, each

an−ibi term has coefficient
(
n
i

)
, which completes the proof. �

B. GROUP THEORY

A group is defined as a set of elements G with an associated binary operation ∗ on
the elements ofG and is denoted by [G, ∗]. However, we will abuse this notation by writing
G to indicate the group, only if the operation is understood from the context. The group
satisfies the following conditions [8]:

Closure: For all a, b ∈ G, a ∗ b = c for some c ∈ G.
Associativity: For all a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c.
Identity: There exists e ∈ G, such that for all a ∈ G, a ∗ e = e ∗ a = a.
Inverses: For all a ∈ G, there exists a−1 ∈ G,such that a ∗ a−1 = a−1 ∗ a = e.

Furthermore, because the groups we are investigating are associated with a field, they also
satisfy the commutative property and are referred to as abelian groups [8].

Commutativity: For all a, b ∈ G, a ∗ b = b ∗ a.
A group G is said to be a finite group if the set G has a finite number of elements. In this
case, the number of elements is called the order of G, denoted by #G or |G| [8].

An example of a group is the set of congruence classes of the integers modulo n
under addition modulo n. Given a positive integer n, we denote the congruence classes by
[a]n which is the set of all integers congruent to a modulo n. The set of congruence classes
of n is denoted by

Zn = {[0]n, [1]n, [2]n, . . . , [n− 2]n, [n− 1]n}

6



This set forms a group under addition where [a]n + [b]n = [a + b]n and is denoted Gn =

[Gn,+] [8].
Let G be a group and a be any element of G, then the set 〈a〉 = {x ∈ G|x =

ai, for all i ∈ Z} is called the cyclic subgroup generated by a. The group G is called
a cyclic group if there exists an element a in G such that G = 〈a〉. In this case a is
called a generator ofG and the successive powers of a generate every element of the group
[8]. Furthermore, if n is a prime p, then the set G∗p = Gp − {[0]p} forms a group under
multiplication modulo n. Note the necessary requirement to remove the zero class because
zero has no inverse under multiplication. An important characteristic of the integers modulo
a prime p is that every such group is a cyclic group. If p > 2, then the group has at least
two generators.

C. FIELD THEORY

A field is a set of elements F together with the two binary operations + and ∗ on F
and is denoted by F = [F,+, ∗]. A field satisfies the following conditions [8]:

Addition: The set F is an abelian group under addition with identity zero.
Multiplication: The set F − {0} is an abelian group under multiplication with

nonzero identity one.
Distributive: For all a, b, c ∈ F , a ∗ (b+ c) = (a ∗ b) + (a ∗ c).

If the set F is finite, then the field F is a finite field. If F is a finite field, the multiplicative
group is cyclic. Since it forms the foundation as the base field for our further discussion,
we now provide the operation tables for the integers modulo two, also called the Galois
Field of two elements, as an example.

+ 0 1
0 0 1
1 1 0

Table II.1 Addition in GF (2)

∗ 0 1
0 0 0
1 0 1

Table II.2 Multiplication in GF (2)

The next section describes Galois Fields in greater detail, but we provide a quick
definition here to clarify our notation. A Galois Field is any finite field with a prime, or a
power of a prime, order. Galois Field’s are denoted in several ways, to include the following
notations; GF (pn), Fpn , and GF (p)[x]/ 〈f(x)〉 (where f is a polynomial that generates the
field, which we further explain in the following section) are the most common notations.

7



We predominantly use the first notation throughout this paper. Therefore, GF (2) is the
field with only two elements, namely {0, 1}. Thus, GF (2n) is the polynomial field whose
variable coefficients are contained in the subfield GF (2). We now provide more rigorous
definitions of these terms.

Let F be a field. If an, an−1, . . . , a1, a0 ∈ F (where n is a non-negative integer),
then any expression of the form anx

n + an−1x
x−1 + · · ·+ a1x+ a0 is called a polynomial

over F in the indeterminate x with coefficients an, an−1, . . . , a0. We also call F the base
field or ground field. The subscript i of the coefficient ai is called the index [8]. If n is
the largest non-negative index such that an 6= 0, then we say that the polynomial f(x) =

anx
n + · · · + a1x + a0 has degree n, written deg(f(x)) = n, and an is called the leading

coefficient of f(x). If the leading coefficient of f(x) is one, then f(x) is said to be a monic
polynomial. The set of all polynomials with coefficients in F is denoted by F [x] [8]. An
element c is called a root of f(x) if f(c) = 0 [8]. While it is possible for a polynomial to
have a root in its base field F , it is not necessary. In fact f(x) may have no roots in its base
field. In this case, all of the roots of f(x) exist in some extension field which we define
shortly.

Similar to the division algorithm for the integers, we can define a division algorithm
for polynomials. For any polynomials f(x) and g(x) in F [x], with g(x) 6= 0, there exist
unique polynomials q(x), r(x) ∈ F [x] such that f(x) = q(x)g(x) + r(x) where either
deg(r(x)) < deg(g(x)) or r(x) = 0 (See [8] p.163 for a proof). Just as the division
algorithm in N has a polynomial counterpart, so does the concept of congruences. Let F be
a field, and p(x) be a fixed polynomial over F . If a(x), b(x) ∈ F , then we say that a(x) and
b(x) are congruent modulo p(x), written a(x) ≡ b(x) (mod p(x)), if p(x)|(a(x) − b(x)).
The set {b(x) ∈ F [x]|a(x) ≡ b(x) (mod p(x))} is called the congruence class of a(x),
and is denoted by [a(x)]p(x). The set of all congruence classes modulo p(x) is denoted by
F [x]/〈p(x)〉 [8].

A non-constant polynomial is said to be irreducible over the field F if it can-
not be factored in F [x] into a product of polynomials of only lower degree. It is said
to be reducible over F if such a factorization exists [8]. The base field F of a polyno-
mial field F [x] can be either an infinite or finite field. Throughout this thesis we con-
sider the base field GF (2). As an example of reducibility, we define the polynomials
f1(x), f2(x), g1(x), g2(x) ∈ F [x], where f1(x) = x2 + 1, f2(x) = x2 + x + 1, g1(x) = x,
g2(x) = x+ 1. Note that f1(x) has the factorization x2 + 1 = (x+ 1)(x+ 1) = (x+ 1)2 =

(g2(x))
2, and so f(x) is reducible. But since g1(x) and g2(x) (which are the only degree
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one polynomials in GF (2)) do not divide f2(x) exactly, f2(x) is irreducible. By the Fun-
damental Theorem of Algebra, every polynomial of degree n has n roots. If all of the
factors of a polynomial are not linear over the base field, then its roots must exist in some
larger field. This suggests the concept of an extension field, but first we provide a familiar
example.

The polynomial x2 + 1 has no roots in the field R of real numbers. However, we
obtain a root by introducing the element i for which i2 = −1 and adjoining it to the field R.
This leads to the definition of the field of complex numbers, denoted by C, which contains
elements of the form α+ iβ, where α and β are elements of R. In a similar manner, we can
construct larger fields in which any polynomial, over any field, has a root. To accomplish
this we use congruence classes of polynomials [8]. Let E and F be fields. If F is a subset
ofE and is closed under the operations of addition and multiplication defined forE, then F
is called a subfield of E, and E is called an extension field of F [8]. Let F be an extension
field of the field K. If the dimension of F as a vector space over K is finite, then F is said
to be a finite extension of K [8].

Let K be a field and let f(x) = anx
n+ · · ·+a0 be a polynomial in K[x] irreducible

over K. If F is an extension field of K, then F is a splitting field for f(x) over K if there
exist elements r1, r2, . . . , rn in F such that f(x) = an(x − r1)(x − r2) . . . (x − rn), and
F = K(r1, r2, . . . , rn). The elements r1, r2, . . . , rn are roots of f(x), and so F is obtained
by adjoining to K a complete set of the roots of f(x). We say that f(x) splits over the field
E if E contains the splitting field of F [8].

D. GALOIS THEORY

We now have the necessary definitions and theorems to define a Galois field. If p
is any prime and k is any integer, there exists a unique finite field of order pk. This field is
called the Galois field of order pk and is denoted by GF (pk) [8]. The characteristic of a
Galois field is defined by the order of the base field, namely p. Because of its applications
in electronic data systems, we are interested in Galois fields of characteristic two denoted
by GF (2).

Given an irreducible polynomial f(x) of degree n over GF (2) with the complex
root α, then α is a primitive element of f(x) if and only if α is a multiplicative generator of
all nonzero elements of GF (2n). Moreover, f(x) is defined to be a primitive polynomial if
f(x) has an associated root α which is a primitive element. Then the powers of αi, where
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i ∈ {0, 1, 2, . . . , 2n − 2}, are all distinct elements when reduced modulo f(x) and modulo
two. The set of elements generated by f(x) is defined as GF (2n) = GF (2)[x]

〈f(x)〉 = {αi|i ∈
Z+

2n−1}, where n = deg(f(x)). These elements comprise the splitting field of f(x) over
GF (2n), where addition and multiplication are well defined.

Although the primitive element α is a multiplicative generator for GF (2n), α does
not provide a relationship of the elements under addition. Our motivation for this thesis is
to search for polynomials that provide insight into the relationship between addition and
multiplication in certain representations of GF (2n). The additive properties of each αi is
fundamentally the Discrete Logarithm Problem as presented in Chapter I.

If a polynomial of degree n is primitive, that polynomial is said to generate all the
nonzero elements of the field. However each element αi in GF (2n) is uniquely expressible
as a linear combination of elements of the set P = {α0, α1, α2, α3, . . . αn−1}, where P
is referred to as a polynomial basis of GF (2n). That is to say, if we consider only the
coefficients of an element ofGF (2n), we can represent the coefficients as a vector of length
n. For example, if a primitive polynomial has degree three, the element xj = x2 + x is
annotated as the vector [ 1 1 0 ] and the element xk = x + 1 is associated to the vector
[ 0 1 1 ]. So a primitive polynomial of degree three generates all possible binary 3-long
vectors, or 3-tuples, except for the all zeros vector. Since the entries in the vector are either
zero or one, as defined by the base field GF (2), there are 2n − 1 nonzero elements in the
field.

i x2 x 1

0 0 0 1
1 0 1 0
2 1 0 0
3 0 1 1
4 1 1 0
5 1 1 1
6 1 0 1

Table II.3 Multiplicative group generated by f(x) = x3 + x+ 1

Consider the primitive polynomial f(x) = x3 + x + 1 over GF (2). This poly-
nomial has no roots in the base field , but the adjoined root α in the extension field gives
f(α) = α3 + α + 1 = 0. Subsequent powers of α generate all possible 3-tuples in an
order determined modulo the polynomial and the coefficients modulo two. Without loss
of generality, we shall express the elements of the field using the indeterminate variable x
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rather than the root α. Table II.3 lists the nonzero elements of the field generated as powers
of α represented by xi = a2x

2 +a1x+a0. The first column, i, is the power of the generator,
while the remaining columns represent the coefficient vector described above.

Recall that a primitive polynomial with a multiplicative generator creates the mul-
tiplicative group of all 2n− 1 nonzero elements. So the period of a primitive polynomial is
2n − 1. If a polynomial of degree n is irreducible but not primitive, then its period is some
divisor of 2n− 1. Since α is a primitive root of f(x) of degree n, every element of GF (2n)

can be represented as linear combinations of the first n powers of α. The representation
of each element is uniquely determined by f(x), as in Table II.3, and the zero element is
represented as the all 0 vector.

The first well known property of Galois Fields is the characteristic identity, as
defined in the following theorem.

Theorem II.2: Given a polynomial f(x) over GF (p), then (f(x))p
k

= f(xp
k
),

which is defined as the characteristic identity of a finite field.

Proof. We write the function f(x) as
∑n

i=0 aix
i = anx

n +
∑n−1

i=0 aix
i = anx

n + g1(x). It
follows from the Binomial Theorem that

(f(x))p
k

= (anx
n + g1(x))

pk

=

pk∑
i=0

(
pk

i

)(
aix

i
)pk−i

(g1(x))
i

But
(
pk

i

)
= pk!

i!(pk−i)! ≡ 0 (mod p) for all i except zero and pk. So the above expression

reduces to (anx
n)p

k

+(g1(x))
pk

= (an)
pk
(
xp

k
)n

+(g1(x))
pk

. By Fermat’s Little Theorem,

(an)
pk

≡ an (mod p). We repeat this process for each successive term until gn−1(x) =

a1x + a0. By the same procedure as above, (gn−1(x))
pk

= (a1x+ a0)
pk

= a1(x
pk

) + ao.

Thus (f(x))p
k

=
∑n

i=0 ai

(
xp

k
)i

= f(xp
k
), which completes the proof. �

There are two well known results regarding the number of primitive and irreducible
polynomials of degree n over a finite field. The number of primitive polynomials of degree
n is given by

#Pn =
φ(2n − 1)

n
,
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where φ(n) is the totient function, and the number of irreducible polynomials is

#In =
1

n

∑
d|n

µ(d)2n/d,

where µ is the Möbius function. Also note, that if f(x) is a primitive or irreducible poly-
nomial over GF (2), so too is the reciprocal polynomial f ∗(x) = xn · f( 1

x
), where n is the

degree of f(x).

Theorem II.3: If f(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0 is a primitive

polynomial over GF (2), then f ∗(x) = a0x
n + a1x

n−1 + · · ·+ an−2x
2 + an−1x+ an is also

a primitive polynomial.

Proof. It is sufficient to show a mapping from f(x) to f ∗(x). We show that f ∗(x) =
xn · f( 1

x
).

f

(
1

x

)
= an

(
1

x

)n
+ an−1

(
1

x

)n−1

+ · · ·+ a2

(
1

x

)2

+ a1

(
1

x

)1

+ a0

(
1

x

)0

xn · f
(

1

x

)
= xn

[
an

(
1

x

)n
+ an−1

(
1

x

)n−1

+ · · ·+ a2

(
1

x

)2

+ a1

(
1

x

)1

+ a0

(
1

x

)0
]

= anx
0 + an−1x

1 + · · ·+ a2x
n−2 + a1x

n−1 + a0x
n

= a0x
n + a1x

n−1 + · · ·+ an−2x
2 + an−1x+ an = f ∗(x)

Since xn · f( 1
x
) = f ∗(x), f ∗(x) is also a primitive polynomial, which completes the proof.

�

Consider the example of f(x) = x7 + x3 + x2 + x + 1. Since this polynomial is
primitive over GF (2), so is x7 · f( 1

x
) = x7 + x6 + x5 + x4 + 1. So if we find one primitive

polynomial, we have actually found two. This simplifies our search for Pascal polynomials
since we need only test half as many polynomials.

E. TESTS FOR IRREDUCIBILITY/PRIMITIVITY

There are primarily two methods to test a polynomial for irreducibility and two
methods for testing primitivity. The first method for testing irreducibility and primitivity is
called the sieving method. This requires a complete listing of all irreducible polynomials
whose degree is half of the degree of the polynomial in question. For example, suppose a
polynomial f(x) has degree 33. We would require a complete list of irreducible polyno-
mials up to degree b33−1

2
c = 16. To then determine irreducibility, we would successively
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divide f(x) by each irreducible polynomial in our list. If any polynomial, say g(x), divides
f(x) without a remainder, then f(x) is reducible since f(x)

g(x)
= p(x) [1]. Once we know a

polynomial f(x) to be irreducible, we assume it has an associated primitive root α which
is a generator of all 2n − 1 nonzero elements. We successively compute the powers of α
modulo f(x) modulo two. If αj repeats any element αi such that 0 < i < j < 2n − 1,
then f(x) is imprimitive. Note that as the degree of the polynomial increases, this method
is very computationally expensive and therefore very undesirable.

The second method is a nine step algorithm presented by S. E. O’Connor [10] that
checks both irreducibility and primitivity of a polynomial over an arbitrary ground field
GF (p), where p is prime. This method is preferred due to computational speed and effi-
ciency. However, since we consider only the ground field GF (2), we can omit steps 2 and
6 from the original algorithm. Also, since our polynomials are not randomly generated,
we show in the beginning of Chapter 3 that Pascal polynomials have no linear factors over
GF (2), and so we omit step 3. Furthermore, we omit the Berlekamp test for irreducibility
as the final step will filter out any reducible polynomials that pass Step 2. Our modified
algorithm is simplified over GF (2) where we assume there exists an efficient algorithm
for factoring 2n − 1. Since polynomial division is a simple shift of a bit string combined
with a bitwise XOR operation, of which both operations are native to microprocessors, the
most difficult step in the algorithm is factoring 2n − 1. We now present a modified and
renumbered version of the algorithm for testing Pascal polynomials over GF (2).

Step 1: Generate a new degree n monic Pascal polynomial over GF (2) of the form
f(x) = xn + (x+ 1)k.

Step 2: Check if x2n−1 ≡ 1 (mod (f(x), 2)) and reject the polynomial as reducible
if the equivalence is not true.

In this step, we note that the cyclotomic polynomial c(x) = x2n−1 + 1 contains as
its roots all 2n− 1 complex roots of unity on the unit circle defined in the complex plane of
numbers [1]. Thus any irreducible polynomial f(x) of degree n contains as its roots some
subset of the roots of c(x) [1]. Therefore, if f(x) does not divide c(x) without remainder,
then f(x) is reducible overGF (2). We must still check that f(x) is not a product of smaller
order polynomials that also divide c(x).

Step 3: Factor r = 2n − 1, into distinct primes; r = pe11 . . . pek
k .

Step 4: Check if xm ≡ 1 (mod (f(x), 2)), where m ∈ { r
p1
, r
p2
, . . . , r

pk
}, and reject

the polynomial as not primitive if any of these equivalences are true.

13



This step utilizes Lagrange’s Theorem which states that if S is a subgroup of a
group G, then the order of S divides the order of G [8]. So with a complete factorization of
r, we continue to divide f(x) into each of the cyclotomic polynomials whose degrees are a
combination of the factors of 2n − 1. A consequence of Step 4 is that if a polynomial has
prime degree p, such that 2p − 1 is a Mersenne prime, then all irreducible polynomials of
degree p are in fact primitive. Since Mersenne primes are very rare among the Mersenne
numbers, it provides us little computational efficiency to rely on this consequence and
incorporate individual tests for irreducibility into our algorithm. In the case of randomly
generated polynomials, a separate test for irreducibility could provide added speed to the
algorithm. However, our polynomials have a noticeable structure and are not randomly
generated. We expect to see a large number of these polynomials as primitive and will
likely reach the step in O’Connor’s algorithm that factors 2n−1, which is arguably the most
difficult step in the algorithm. For a complete explanation of why we can omit Berlekamp’s
Test for Irreducibility and move right to our Step 4, reference Appendix A.

Step 5: If f(x) passes steps 1 through 4, accept it as primitive.
As an example, consider the previous polynomial f(x) = x7 + (x + 1)3 = x7 +

x3 + x2 + x + 1 where c(x) = x127 + 1. Performing the polynomial division modulo two
shows that f(x) divides c(x) without remainder. Since 27 − 1 = 127 is a Mersenne prime,
f(x) cannot have period smaller than 127 and is therefore primitive.

So what if 2n − 1 is not a Mersenne prime? Consider these three examples of
reducible polynomials; f1(x) = x6+x3+x2+x+1, f2(x) = x6+x5+x4+x3+x2+x+1, and
f3(x) = x6 +x2 +1. Note that f1 is also a Pascal polynomial where f1(x) = x6 +(x+1)3.
However, f1, f2, and f3 are reducible having the factors f1(x) = (x2 +x+1)(x4 +x3 +1),
f2(x) = (x3 +x+1)(x3 +x2 +1), and f3(x) = (x3 +x+1)2(which has repeated factors).
Now let’s look at the factorization of c(x) = x26−1 + 1,

c(x) =(x+ 1)(x2 + x+ 1)(x3 + x+ 1)(x3 + x2 + 1)

(x6 + x+ 1)(x6 + x3 + 1)(x6 + x4 + x2 + x+ 1) · · ·

where the remaining factors of c(x) are the remaining irreducible sixth degree polynomials.
Note that f1 will not divide c(x), since c(x) does not have (x4+x3+1) as one of its factors.
Also note that f3 will not divide c(x), since c(x) only has (x3 + x+ 1) as one of its factors
once, not twice. Thus f1 and f3 would have been eliminated in Step 2. Now f2 is a little
tricky since c(x) has as its factors both of the factors of f2. So f2 will pass Step 2 since it
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evenly divides c(x), but it will not pass Step 4. Both factors of f2 are themselves primitive
polynomials with period 23 − 1 = 7. The period of f2 is therefore the period of the least
common multiple of the periods of its factors. So the period of f2 is seven. Step 3 shows
the factors of 26−1 = 63 = 32 ·7. When we divide x3·7 +1 = x21 +1 by f2, the remainder
will be zero and we reject this polynomial as primitive.

F. LINEAR-FEEDBACK SHIFT REGISTERS

A Linear-Feedback Shift Register, or LFSR, is an electronic hardware or software
representation of a polynomial over GF (2). A LFSR is a finite-state machine whose suc-
cessive states are uniquely determined by the previous state of the register. We denote a
state by si and define a function γ(si) to be the operation performed by the register where
si+1 = γ(si) [1]. Each successive state corresponds to a time-step of the register where the
output of the register at each time-step is a single bit. A LFSR is equivalent to a polynomial
over GF (2) such that γ(si) =

∑n−1
k=0 akx

k = f(x) where the ai’s are the coefficients of the
terms with degree less than n of the polynomial f(x). If a primitive polynomial is used
to represent the operation of the register, then the resulting sequence of outputs is an m-
sequence of full length or period. As expected, a full-length m-sequence has period 2n− 1

where n is the degree of the primitive polynomial represented by the register.

x6x5x4x3

⊕x2

⊕x⊕1Output Stream

Figure 3. Fibonacci LFSR for f(x) = x7 + x3 + x2 + x+ 1

1⊕x⊕x2

⊕x3x4x5x6Output Stream

Figure 4. Galois LFSR for f(x) = x7 + x3 + x2 + x+ 1
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There are essentially two classical types of LFSRs, the Fibonacci register and the
Galois register. The Galois register is useful for generating the successive powers of the
primitive element α and the state of the machine at time i gives the field representation
of αi. Table II.3 is the actual output of the Galois register represented by the primitive
polynomial f(x) = x3 + x+ 1. While the bit-stream output from both registers is identical
at certain offsets, the Fibonacci register is computationally more efficient at producing
the m-sequence without regard to the field representation of f(x). Figure 3 and Figure
4 demonstrate the operation of the two registers given the primitive polynomial f(x) =

x7 + x3 + x2 + x+ 1.
For the primitive polynomial f(x) = x3+x+1, them-sequence output is [ 0 0 1

0 1 1 1 ]. If we take a linear shift of them-sequence by some number of bits i and sum
the bits of the shifted sequence to the original sequence modulo two, the result is the same
sequence shifted by a number of bits j. First, a labeling of the m-sequence is necessary to
determine the magnitude of the shift. We label each sequence in the following fashion,

0 0 1 0 1 1 1
S0 S1 S2 S3 S4 S5 S6

We next take the original sequence with a shift of one, and add each bit modulo two as
follows.

0 0 1 0 1 1 1
0 1 0 1 1 1 0
0 1 1 1 0 0 1

S0 S1 S2 S3 S4 S5 S6

S1 S2 S3 S4 S5 S6 S0

S3 S4 S5 S6 S0 S1 S2

The resulting sequence is a shift of the original sequence by 3 positions.
Shift-and-Add (SAA) pairs [4], also referred to as Cycle-and-Add pairs [1], are only

defined for primitive polynomials and therefore allow for a method for performing addition
within a respective field as characterized by a primitive polynomial f(x). In particular,
SAA pairs describe two elements of the field whose sum, taken modulo two, differs only
by x0 = 1. Observe from Table II.3 that x2 + x6 = 1. So x2 and x6 are also SAA
pairs and we denote this relationship by writing the exponents as an ordered pair. Thus
(1, 3), (2, 6), and (4, 5) are examples of SAA pairs as seen in Table II.3. In the example of
f(x) = x3 + x + 1, we notice that f(x) is a trinomial. Primitive trinomials are desirable
in that they give an immediate SAA pair for the field. By setting a primitive trinomial f(x)

equal to zero, we get the first SAA pair by
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x3 + x+ 1 = 0

x3 = x+ 1.

Squaring both sides of the equation gives x6 = (x + 1)2. By the Binomial Theorem,
(x + 1)2 = x2 + 2x + 1. Reducing the coefficients modulo two, (x + 1)2 = x2 + 1 and
thus x6 = x2 + 1. Squaring once more gives x12 = x5 = (x2 + 1)2 = x4 + 1. Thus,
from one SAA pair we can generate a table that defines addition within the field. If we
wanted to know the sum, x3 + x4, as a power of the primitive element, we simply perform
the following reduction

x3 + x4 = x3(x+ 1)

= x3x3 = x3+3

= x6 = x2 + 1.

Thus the SAA or Zech’s Logarithm table, provides a convenient method of per-
forming addition within GF (2n) without computing the entire multiplication and addition
tables for f(x). Note that as the degree of the polynomial increases, the size of the field
grows exponentially. However, the “squaring method” of finding SAA pairs only provides
a linear growth in the number of SAA pairs immediately obtainable. Some work is required
to compute the rest of the SAA table, but efficient algorithms provide a method of complet-
ing this table. Since every primitive polynomial divides the polynomial representations of
each of its SAA pairs, we can search for the next SAA pair not in our table by computing
1+xi

f(x)
+ r = xj . The singleton remainder term xj gives the SAA pair (i, j).

Consider the polynomial f(x) = x7 + x3 + x2 + x+ 1 = x7 + (x+ 1)3, we know
from Chapter 1 that the first SAA pair for this polynomial is (1,87). Recall that this SAA
pair corresponds to the trinomial x87 + x + 1. Squaring the trinomial gives x174 + x2 + 1.
Reducing the exponents modulo 127 gives the trinomial x47 + x2 + 1, resulting in the SAA
pair (2,47). So we get the first seven SAA pairs by taking (2k × 1, 2k × 87) (mod 127)

where 0 ≤ k ≤ n − 1. The first seven SAA pairs for f(x) are (1, 87), (2, 47), (4, 94),
(8, 61), (16, 122), (32, 117), and(64, 107). We get seven more SAA pairs by multiplying
the original trinomial x87 + x + 1 by x−1, and performing the squaring operation again
by taking (2k × (−1), 2k × (87 − 1)) (mod 127). The resulting SAA pairs are (126, 86),
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(125, 45), (123, 90), (119, 53), (111, 106), (95, 85), and(63, 43). Again, we get seven more
by multiplying by x−87 and taking (2k × (−87), 2k × (1− 87)) (mod 127). This time, the
resulting SAA pairs are (40, 41), (80, 82), (33, 37), (66, 74), (5, 21), (10, 42), and(20, 84).

The first 63 SAA pairs were relatively straightforward to find, but there are still
63 more to be found. The first integer that is not in a SAA pair is 3. To find the j that
satisfies xj + x3 + 1, we multiply x3 + 1 by x127. We begin reducing x130 + x127 by adding
multiples of f(x) modulo two. Clearly x2n−1 ≡ 1 (mod (f(x), 2)), for any primitive
polynomial f(x) with degree n, so dividing by f(x) will simply return what we began
with. But while performing the polynomial division, there is a polynomial multiple of f(x)

that when added to x130 + x127, leaves a single remainder term. This singleton remainder
results in the desired j that we were looking for. In this case the SAA pair is thus (3,57).
We can perform the squaring and multiplying procedure to find the next 21 SAA pairs.
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III. PASCAL POLYNOMIALS

We continue by considering polynomials of the form f(x) = xn+p(x), where p(x)
is a row of Pascal’s triangle modulo two. We define polynomials of this form as Pascal
polynomials. Since each row of Pascal’s triangle can be viewed as the coefficients in the
expansion of (x + 1)k, any polynomial that can be represented in the form of a row of
Pascal’s triangle plus an additional monomial term resembles a trinomial. It would be very
nice to find a primitive polynomial of this form because we could then find an easy solution
for the first SAA pair.

Why do we care if p(x) is a row of Pascal’s triangle? The most obvious reason, as
stated above, is that a Pascal polynomial of the form f(x) = xn + (x + 1)k is similar to a
trinomial of the form g(x) = xn+xk+1. The not so obvious reason to choose polynomials
of this form is that when f(x) = xn + (x + 1)k, f(x) has no linear factors. This allows
us to exclude Step 3 in O’Connor’s test for irreducibility/primitivity. Any row of Pascal’s
triangle modulo two has an even number of nonzero terms, with the outermost terms always
being 1. Thus adding the additional xn term yields a polynomial with an odd number of
terms, and f(x) has no solutions in the ground field GF (2).

Theorem III.1: Any polynomial of the form f(x) = xn + (x + 1)k has no linear
factors over GF (2), where n > 0 and k > 0.

Proof. Evaluating f(x) over the ground field, we see that

f(0) = 0n + (0 + 1)k = 0 + (1)k ≡ 1 (mod 2), and

f(1) = 1n + (1 + 1)k = 1 + (2)k ≡ 1 (mod 2).

So f(x) has no linear factors, which completes the proof. �

Since we have just shown that polynomials of the form f(x) = xn + (x+ 1)k have
no linear factors over the ground field, we can exclude this step in our test for irreducibil-
ity. This thesis investigates some specific cases of the generalized class of polynomials
over GF (2) of the form f(x) = xn + (xa + 1)k. For now we set a = 1, giving poly-
nomials of the form f(x) = xn + (x + 1)k. Recall that the fewer terms in a primitive
polynomial, the fewer addition operations, and the faster we can implement the algorithm
in hardware/software. So a polynomial with fewer terms is presumably more computation-
ally efficient when wired up as an LFSR, thus trinomials are preferred over pentanomials
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which are preferred over heptanomials, etc... It would be nice to know which rows of Pas-
cal’s triangle will yield four terms, six terms, eight terms, etc... Consider the following
theorem.

Theorem III.2: The number of odd terms in row k of Pascal’s triangle is 2wt(k),
where wt (k) is the Hamming weight of k and represents the number of one’s in the binary
expansion of k.

Proof. Let f(x) = (x+ 1)k =
∑k

i=0

(
k
i

)
xi be the polynomial representation of the kth row

in Pascal’s triangle modulo two. Further, if the Hamming weight of k is wt (k) = w, we
can write the binary representation of k as k =

∑w
i=0 2ki , where k1 < k2 < · · · < kw.

Then,

(x+ 1)
∑w

i=0 2i

=
w∏
i=0

(x+ 1)2i

=
w∏
i=0

(x2i

+ 1)

by Theorem II.2. It is straightforward to show that any polynomial with n terms will have
twice as many terms when multiplied by the binomial (xa + 1), such that a does not equal
any exponent in the original polynomial. Since our last equation has w binomial products,
there are 2w number of terms in the expanded product. The resulting expanded polynomial
must match the number of terms in the binomial expansion. So there must be 2w number
of binomial coefficients

(
k
i

)
, which are odd. This completes the proof. �

We now know that if k is a power of two, then by Theorem II.2, the polynomial
f(x) = xn + (x + 1)k = xn + xk + 1. A great deal is known about trinomials over
GF (2), thanks to the celebrated Swan’s Theorem [5], so we focus the scope of this thesis
to polynomials with more than three terms, namely k 6= 2t. But Theorem III.2 shows that
our Pascal polynomial yields a pentanomial if and only if the Hamming weight is two.

Corollary III.3: The polynomial f(x) = xn + (x + 1)k, with n > k, is a pen-
tanomial if and only if the Hamming weight of k is 2.

Proof. Consider k = 2s + 2t, where t > s. Then,

xn + (x+ 1)2t+2s

= xn + (x+ 1)2t

(x+ 1)2s

= xn + xk + x2t

+ x2s

+ 1

The reciprocal is trivial as the number of terms in (x+ 1)k is 2wt(k) = 22 = 4, by Theorem
III.2. This completes the proof. �
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Thus, we should focus our attention on rows of Pascal’s triangle that have a Ham-
ming weight of two or more. Since three is the smallest number with Hamming weight
two, let us begin our examination with row three Pascal polynomials.

A. ROW THREE POLYNOMIALS

We want to know when the pentanomial f(x) = xn + x3 + x2 + x+ 1 is primitive
for n > 3. In order to solve for a SAA pair, we note that if xn + (x + 1)3 = 0, then
xn = (x + 1)3. Note that a polynomial has the SAA property if and only if it is primitive.
But having a SAA solution (i.e. x + 1 = xn/3) is not a sufficient condition for primitivity.
So when 3|n, f(x) has a SAA solution. But we show now that f(x) of degree n = 3ñ is
reducible with the factor g(x) = x2 + x + 1, therefore f(x) is imprimitive and does not
have the SAA property even though it has a SAA solution.

Theorem III.4: Any polynomial of the form f(x) = x3ñ + x3 + x2 + x + 1 is
reducible over GF (2).

Proof (Induction). Let g(x) = x2 + x+ 1. Clearly g(x)|(x2 + x+ 1), so it is sufficient to
show that g(x)|(x3ñ + x3). Reducing the monomial term x3ñ modulo g(x) modulo 2, we
have

x3ñ + x3ñ−2(x2 + x+ 1) + x3ñ−3(x2 + x+ 1) ≡
x3ñ + x3ñ + x3ñ−1 + x3ñ−2 + x3ñ−1 + x3ñ−2 + x3ñ−3 ≡

x3ñ−3 ≡ x3(ñ−1) (mod 2).

We can continue this reduction until x3ñ ≡ x3 (mod (g(x), 2)). Therefore g(x)|(x3ñ+x3)
and it follows that g(x)|f(x), which completes the proof. �

We next consider polynomials of an even degree where n = 2ñ. It is clear that
3 - 2ñ unless 3|ñ. If f(x) is a primitive polynomial, then the root α is a cyclic generator of
the multiplicative group with period 2n − 1 such that α2n−1 = α0 = 1. Therefore, we can
multiply the equation, any number of times, by α2n−1 giving

(x+ 1)3 = x2ñ

= x2ñxt(2
2ñ−1)

= x2ñ+t(22ñ−1).

21



Now the exponent looks more complicated and we must determine its divisibility by three.
Before investigating this case, we prove a useful lemma.

Lemma III.5: If ‘a’ is an even nonnegative integer, then 3 divides 2a−1. Otherwise
if ‘a’ is odd, then 3 divides 2a + 1.

Proof. Since 2 ≡ −1 (mod 3), then 2a − 1 ≡ (−1)a − 1 = 0 if a is even. Otherwise
2a + 1 ≡ (−1)a + 1 = 0 if a is odd, which completes the proof. �

So when the degree of f(x) is even, we now provide a proof that the exponent
2ñ + t(22ñ − 1) is not divisible by three. Thus row three polynomials of even degree can
never have the SAA Property and are therefore imprimitive.

Lemma III.6: For any nonnegative integers n and t where n = 2ñ and 3 - n, then
it is the case that 3 - 2ñ+ t(22ñ − 1).

Proof. Lemma III.5 shows 3 | (22ñ − 1) so 3 | t(22ñ − 1) for any choice of t ∈ Z. Thus
when n = 2ñ and 3 - n, three cannot divide 2ñ+t(22ñ−1) which completes the proof. �

So the degree of a row three polynomial cannot be even or a multiple of three and be
primitive. By applying a sieve to the integers and removing those not of the form n = 2ñ

or n = 3ñ, we observe that the remaining integers have the form n = 6ñ± 1 for all ñ ∈ Z.

��1 ��2 ��3 ��4 5 ��6 7 ��8 ��9 ��10
11 ��12 13 ��14 ��15 ��16 17 ��18 19 ��20
��21 ��22 23 ��24 25 ��26 ��27 ��28 29 ��30

Table III.1 Integers of the form 6Z± 1

We now prove that if f(x) is a row-three polynomial with degree n = 6ñ± 1, then
f(x) has a SAA solution and can be further tested for the SAA Property (i.e. primitivity)
using the method described in Chapter II.
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Theorem III.7: When n = 6ñ ± 1, three divides 6ñ ± 1 + t(26ñ±1 − 1) for some
t ∈ {1, 2}.

Proof 1 (Induction). Clearly 3 | 6ñ, so when n = 6ñ− 1 and t = 1 we have

(26ñ−1 − 1)− 1 = (26ñ−1 − 2)

= 2(26ñ−2 − 1)

= 2(22(3ñ−1) − 1).

By Lemma III.5 three divides (22(3ñ−1) − 1), so three also divides (6ñ+ 26ñ−1 − 2).

Proof 2 (Induction). Again 3 | 6ñ, so when n = 6ñ+ 1 and t = 2 we have

2(26ñ+1 − 1) + 1 = (26ñ+2 − 1)

= (22(3ñ+1) − 1).

By Lemma III.5 three divides (22(3ñ+1) − 1), so three also divides (6ñ+ 26ñ+2 − 1). Thus
for any choice of t ∈ {1, 2}, three always divides 6ñ± 1 + t(26ñ±1 − 1), which completes
the proof. �

Combining the first and second class of row three polynomials, we obtain a gen-
eralized class of row three polynomials of the form f(x) = x6ñ±1 + (x + 1)k which, if
irreducible, potentially have an associated primitive element. Before we begin searching
for primitive polynomials of this type, recall from the beginning of the chapter that the
generalized Pascal polynomial has the form f(x) = xn + (xa + 1)k. Note that our solu-
tions for the SAA pair of row three polynomials is independent of the value of a. We use
this concept to find multiple pentanomials for a specific value of n which we can also test
for primitivity. Thus, we consider the most generalized row three polynomials of the form
f(x) = x6ñ±1 + (xa + 1)k where n = 6ñ± 1 > 3a.

As an example, consider a row three polynomial of degree seven, where the expo-
nent a is equal to one. This polynomial expands to the pentanomial f(x) = x7 +x3 +x2 +

x + 1. We could also allow the exponent a to equal two and the resulting polynomial is
f(x) = x7 +x6 +x4 +x2 +1, which is still a pentanomial of degree 7. So for polynomials
of degree seven, there are two pentanomials to test for primitivity. Both of these are in fact
primitive. Generalizing this concept, as long as n > 3a, there are b (n−2)

3
c pentanomials

which may be primitive.
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B. ROW FIVE POLYNOMIALS

The next class of polynomials we investigate are row five polynomials of the form
f(x) = xn + (x + 1)5. Note that five is one greater than a power of two, so the full
expansion yields a pentanomial of the form f(x) = xn + x5 + x4 + x + 1. Again we
examine characteristics of the degree of the polynomial. If the degree is a multiple of five,
then f(x) is reducible.

Theorem III.8: Given a polynomial f(x) = x5ñ+(x+1)5 overGF (2) and ñ > 1,
f(x) is reducible with the factor g(x) = xn + x+ 1.

Proof (Construction).

x5ñ + (x+ 1)5 ≡ xñ(x4ñ + (x+ 1)4) + xñ(x+ 1)4 + (x+ 1)5

≡ xñ(xñ + (x+ 1))4 + (x+ 1)4(xñ + (x+ 1))

≡ (xñ + x+ 1)(xñ(xñ + x+ 1)3 + (x+ 1)4) (mod 2),

which completes the proof. �

Next, we consider the case where the degree of f(x) is a multiple of four. It follows
from Fermat’s Little Theorem that when the degree of the monomial term is divisible by
four but not by five, then the cyclic element with exponent 24ñ − 1 is divisible by five.

Lemma III.9: Given an integer n = 4ñ relatively prime to five, 24ñ− 1 is divisible
by five.

Proof. By Fermat’s Little Theorem,

(25−1) = (24) ≡ 1 (mod 5)

(24)ñ ≡ 1 (mod 5)

(24ñ)− 1 ≡ 0 (mod 5),

which completes the proof. �

So a row five polynomial is never primitive if its degree is a multiple of four or
five. Unfortunately we are not able to say more about when these polynomials are in fact
primitive. Some of these issues are addressed in Chapter IV.
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C. GENERALIZED RESULTS

Following the method described in the preceding sections, there are two main re-
sults that can be generalized as follows. The degree of a polynomial cannot be a multiple
of the row value k and the degree cannot be a multiple of φ(k), where φ is Euler’s Totient
function as defined in Chapter 2. In the first case the polynomial is reducible while the
second case shows imprimitivity since f(x) has no SAA solution. We present these results
in a consolidated theorem now.

Theorem III.10: Given a polynomial of the form f(x) = xN + (xA + 1)K over
GF (2), where N > KA and K is odd, if

(i) N = KT for any integer T > A, then f(x) is reducible with factor g(x) = xT +
x+ 1.

(ii) N = φ(K)T for any integer T not a multiple of K, then f(x) is imprimitive.

Proof (i). Represent K in its binary expansion K = 2m + am−12
m−1 + · · ·+ a12 + 1. By

a telescoping algorithm, begin with K = 2m +R so that

xKT + (xA + 1)K = x(2m+R)T + (xA + 1)(2m+R)

= xRT (x2mT + (xA + 1)2m

) + xRT (xA + 1)2m

+ (xA + 1)2m

(xA + 1)R

= xRT (xT + xA + 1)2m

+ (xA + 1)2m

(xRT + (xA + 1)R).

Repeat this process on the (xRT + (xA + 1)R) term for each nonzero ai coefficient until
Kj = 2j + 1.

Proof (ii). Assume f(x) is a primitive polynomial of degree N = φ(K)T , where T is
not a multiple of K, over GF (2) with root α. Then f(α) = αN + (αA + 1)K = 0, and
(αA + 1)K = αNαL(2N−1). Since K does not divide N , it is sufficient to show that if
K divides L(2N − 1), then f(x) has no SAA solution and is never primitive. The result
follows directly from Euler’s Theorem. Since K is odd, K is relatively prime to 2. Thus,

2φ(K) ≡ 1 (mod K)

2N = 2φ(K)T = (2φ(K))T ≡ 1 (mod K)

2φ(K)T − 1 ≡ 0 (mod K)

and K divides (2N − 1), which completes the proof. �
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IV. RESULTS AND FUTURE WORK

We have shown that primitive polynomials of the form f(x) = xn + p(x), where
p(x) is a certain row of Pascal’s triangle modulo 2, have restrictions on the value of n for
a given kth row. Although this thesis presents conditions under which a polynomial cannot
be primitive, we have not stated anything conclusive about when a polynomial definitely is
primitive. The data presented in Appendices C - F, demonstrates that the actual number of
primitive polynomials to the outside solutions (n > a · k) is not nearly as dense as we had
hoped. In fact , for a fixed row k of Pascal’s triangle, the number of primitive polynomials
as n increases becomes very sparse. Perhaps as n grows, so too must the row of the triangle
which we evaluate.

Although we did not discuss “inside” solutions in Chapter 3, such a polynomial
occurs when the degree of the monomial term is inside the expanded binomial terms such
that n < a · k and the degree is therefore a · k (by our notation for the general form of a
Pascal polynomial). For example, the polynomial

fp(x) = (x+ 1)9 + x4

= x9 + x8 + x4 + x+ 1

is an inside polynomial and is in fact primitive. We performed a comparison of these
polynomials to trinomials of equal degrees, with interesting results (Appendices G - H).
The results indicate that any primitive Pascal polynomial has an identical, corresponding
primitive trinomial. For example, if the polynomial f(x) = (x+1)k +xn is primitive, then
the trinomial t(x) = xk + xn + 1 is also primitive. So given our example of fp above, the
trinomial ft(x) = x9 + x4 + 1 should also be primitive, which it is.

Our experimental result is indicative of the theoretical results obtained by Zeng ,
Han, and He in their currently unpublished paper, The parity of the number of irreducible

factors of xl−ef (xf + 1)e + 1 over F2 [11]. In this paper, the authors present a generaliza-
tion of Swan’s theorem for our Pascal polynomials similar to those made in the paper by
Fredricksen, Hales, and Sweet [6] for trinomials. It is not immediately apparent that the
polynomials of the form xl−ef (xf +1)e+1 are equivalent to our polynomials with the form
xn + (xa + 1)k, but they are in fact reciprocal polynomials.
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One area of future work lies in further analysis of the results regarding those Pascal
polynomials that are primitive. Is there a trend that we can depict, by graphical or other
means, which might lend some insight into a method of predicting when a Pascal polyno-
mial will be primitive? Given the linear nature of polynomials as LFSRs, stream ciphers
using this technique are relatively easy to break for small degree polynomials. However,
as the degree becomes very large, say n ≥ 200, the sequences take an incredibly long
time to repeat. In fact, a 200 degree polynomial with full period would take approximately
6.22 × 1048 years to recycle with a data rate of 1 megabit/second. If we could efficiently
find a large pool of polynomials with large degree, we could utilize portions of LFSRs with
a reasonable level of security.
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APPENDIX A. PROOF OF PRIMITIVE POLYNOMIAL
ALGORITHM

Given a polynomial f(x) of degree n over GF (2), such that n > 2, we know the
period of f(x), denoted per(f(x)), is less than or equal to 2n − 1. We also know f(x) is
primitive if the period of f(x) = 2n − 1. And we know that given two polynomials p(x)
and q(x), the per(p(x)q(x)) = lcm(per(p(x)), per(q(x))). Armed with these facts, we are
prepared to make and prove the following claim.

Theorem A.1: Given a polynomial f(x) of degree n over GF (2), and x2n−1 ≡ 1

(mod f(x)), and xd 6≡ 1 (mod f(x)), for all d that are divisors of 2n − 1, then f(x) is

primitive.

Proof (Contradiction). If we know f(x) to be irreducible of degree n, we know per(f(x))|2n−
1. So if we know that f(x) is irreducible, then the conditions x2n−1 ≡ 1 (mod f(x)) and
xd 6≡ 1 (mod f(x)) imply that f(x) is primitive. But we don’t know that f(x) is irre-
ducible.

It is sufficient to show that there exists some d|2n−1 such that xd ≡ 1 (mod f(x)).
Let’s assume that f(x) = g(x)h(x), where 0 < deg(g(x)) = r < n, and 0 < deg(h(x)) =

s < n, and deg(f(x)) = deg(g(x)) + deg(h(x)) = r + s = n, and gcd(g(x), h(x)) = 1,
and x2n−1 ≡ 1 (mod f(x)). Then per(g(x)) = e1 ≤ 2r − 1 and per(h(x)) = e2 ≤ 2s − 1.
So per (f(x)) = lcm(e1, e2) = e, and

e ≤ (2r − 1)(2s − 1) = 2r+s − 2r − 2s + 1 < 2n − 1

But, since g(x)|f(x) and f(x)|x2n−1 + 1, it is also the case that g(x)|x2n−1 + 1,
which implies that e1|2n− 1. By a similar arguement, h(x)|f(x) so h(x)|x2n−1 + 1, which
implies that e2|2n − 1. Now, since e1|2n − 1 and e2|2n − 1, we know that e|2n − 1. But
e < 2n − 1, so h(x)|xe + 1 and g(x)|xe + 1 which implies that f(x)|xe + 1. Therefore
e = 2d − 1 < 2n − 1 and f(x) is imprimitive. Thus the contradiction which completes the
proof. �
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APPENDIX B. SAMPLE MAGMA CODE

This appendix is an example of the code used in Magma, an algebraic software
package, to test values of N from 1 to 750 for a given line of Pascal’s triangle. The sample
code below is from a third row polynomial and the code includes the two checks discovered
in the thesis to filter values of N . This code checks for primitivity, but could also be used
to check for irreducibility.

P<x> := PolynomialRing(GF(2));

for n in [1..700] do
t := n mod 6;
if t eq 1 or t eq 5 then

max := Floor(n/3);
n, { a: a in [1..max] | IsPrimitive(f) where f\\
is xˆn + (xˆa +1)ˆ3 };

end if;
end for;
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APPENDIX C. PRIMITIVE TRINOMIALS

This appendix presents all primitive trinomials of degree four to 750. The trinomials
have the form xN +xK+1. If there are multiple values in theK cell, then each choice ofK
for the corresponding N is a primitive trinomial. We do not list the reciprocal polynomials,
so we only test values of K up to bN

2
c.

Table C.1: Primitive trinomials of degree 4 to 750.

N K N K N K
4 1 249 86 489 83

5 2 250 103 490 219

6 1 252 67 494 137

7 1, 3 255 52, 56, 82 495 76, 89, 118, 226

9 4 257 12, 41, 48, 51, 65 497 78, 216, 228

10 3 258 83 503 3, 26, 248

11 2 263 93 505 156, 174

15 1, 4, 7 265 42, 127 506 95, 135

17 3, 5, 6 266 47 508 109

18 7 268 25, 61 511 10, 15, 31, 160, 202, 216

20 3 270 53, 133 513 85, 175

21 2 271 58, 70 518 33, 45

22 1 273 23, 53, 67, 88, 92, 110, 113 519 79

23 5, 9 274 67, 99, 135 521 32, 48, 158, 168

25 3, 7 278 5 524 167

28 3, 9, 13 279 5, 10, 38, 40, 41, 59, 76, 80, 125 527 47, 123, 147, 152, 198, 239

29 2 281 93, 99 529 42, 114, 157

31 3, 6, 7, 13 282 35, 43 532 1, 37

33 13 284 119 537 94

35 2 286 69, 73 540 179, 211

36 11 287 71, 116, 125 543 16, 28, 58, 203, 235

39 4, 8, 14 289 21, 36, 84 545 122

41 3, 20 292 97 550 193

47 5, 14, 20, 21 294 61 551 135, 240

49 9, 12, 15, 22 295 48, 112, 123, 142, 147 553 39, 57, 94, 99, 109, 255, 258

52 3, 19, 21 297 5, 83, 103, 122, 137 556 153

55 24 300 7, 73, 91 559 34, 70, 148, 210

57 7, 22 302 41 561 71, 109, 155

58 19 305 102 564 163

60 1, 11 313 79, 121 566 153

63 1, 5, 31 314 15 567 143, 275

65 18, 32 316 135 569 77, 210

68 9, 33 319 36, 52, 129 570 67

71 6, 9, 18, 20, 35 321 31, 56, 76, 82, 155 574 13

73 25, 28, 31 322 67 575 146

79 9, 19 327 34, 152 577 25, 27, 231

81 4, 16, 35 329 50, 54 582 85

Continued on Next Page. . .
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Table C.1 – Continued
N K N K N K
84 13 332 123 583 130

87 13 333 2 585 121, 151, 157, 232

89 38 337 55, 57, 135, 139, 147 588 151, 253

93 2 342 125 590 93

94 21 343 75, 135, 138, 159 593 86, 108, 119, 177

95 11, 17 345 22, 37, 106 594 19, 35

97 6, 12, 33, 34 350 53 599 30, 210

98 11, 27 351 34, 55, 116, 134 601 201, 202

100 37 353 69, 95, 138, 143, 153, 173 607 105, 147, 273

103 9, 13, 30, 31 359 68, 117 609 31, 128, 181, 233

105 16, 17, 37, 43, 52 362 63, 107 610 127

106 15 364 67 615 211, 232, 238

108 31 366 29 617 200

111 10, 49 367 21, 171 622 297

113 9, 15, 30 369 91, 110 623 68, 87, 128, 185, 230, 251, 296, 311

118 33, 45 370 139, 183 625 133, 156

119 8, 38 375 16, 64, 149, 182 628 223, 289

121 18 377 41, 75 631 307

123 2 378 43, 107 633 101, 292

124 37 380 47 634 315

127 1, 7, 15, 30, 63 382 81 639 16, 88, 95, 179, 305

129 5, 31, 46 383 90, 108, 135 641 11, 36, 45, 95, 287

130 3 385 6, 24, 51, 54, 142, 159 642 119

132 29 386 83 646 249

134 57 390 89 647 5, 150, 215, 312

135 11, 16, 22 391 28, 31 649 37, 73, 171, 310, 321

137 21, 35, 57 393 7, 62, 91 650 3

140 29 394 135 652 93, 97

142 21 396 25, 109, 169, 175 655 88, 192

145 52, 69 399 86, 109, 181 657 38, 92, 148

148 27 401 152, 170 658 55

150 53 404 189 662 297

151 3, 9, 15, 31, 39, 43, 46, 51, 63, 66, 67, 70 406 157 663 257, 307

153 1, 8 407 71, 105 665 33, 53, 144, 192, 269, 317

159 31, 34, 40 409 87 670 153, 273

161 18, 39, 60 412 147 671 15, 201, 243

167 6, 35, 59, 77 415 102, 163 673 28, 183, 252, 259, 300

169 34, 42, 57, 84 417 107, 113, 155 676 241, 277

170 23 422 149 679 66, 216

172 7 423 25 686 197

174 13 425 12, 21, 42, 66, 111, 191 687 13, 133

175 6, 16, 18, 57 428 105 689 14, 87, 179, 207, 336

177 8, 22, 88 431 120, 200 692 299

178 87 433 33, 61, 118, 153 695 212

183 56 436 165 697 267, 310

185 24, 41, 69 438 65 698 215, 311

191 9, 18, 51, 71 439 49, 133, 145, 156, 171 702 37, 317

193 15, 73, 85 441 31, 127, 212 705 19, 161, 194, 266, 328, 331

194 87 446 105, 153 708 287, 301

198 65 447 73, 83 711 92

199 34, 67 449 134, 167 713 41, 297

Continued on Next Page. . .
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Table C.1 – Continued
N K N K N K

201 14, 17, 59, 79 450 79 714 23, 151

202 55 455 38, 62, 74 716 183, 275

207 43 457 16, 61, 123, 210, 217, 226 719 150, 174, 257, 299, 314

209 6, 8, 14, 45, 47, 50, 62 458 203 721 9, 159, 256, 270, 283, 328

212 105 460 61 722 231

215 23, 51, 63, 77, 101 462 73 726 5, 241

217 45, 64, 66, 82, 85 463 93, 168, 214 727 180, 217, 357

218 11, 15, 71, 83 465 59, 103, 158 729 58, 253

223 33, 34, 64, 70, 91 470 149, 177 730 147

225 32, 74, 88, 97, 109 471 1, 119, 127 735 44, 89, 262

231 26, 34 474 191, 215 737 5, 303

233 74 476 15, 141 738 347

234 31, 103 478 121 740 153, 317

236 5 479 104, 105, 122, 158, 224 743 90, 144, 146, 209, 210, 239, 279, 326

239 36, 81 481 138, 201, 231 745 258, 336, 342

241 70 484 105 746 351

247 82, 102 487 94, 127
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APPENDIX D. PRIMITIVE INSIDE PASCAL POLYNOMIALS

This appendix presents all primitive inside Pascal polynomials of degree four to
750. The trinomials have the form (x+1)N+xK , whereN > K. If there are multiple values
in the K cell, then each choice of K for the corresponding N is a primitive polynomial.
We do not list the reciprocal polynomials, so we only test values of K up to bN

2
c.

Table D.1: Primitive inside Pascal polynomials of degree 4
to 750.

N K N K N K
4 1 249 86 489 83

5 2 250 103 490 219

6 252 494 137

7 1, 3 255 52, 56, 82 495 76, 89, 118, 226

9 4 257 12, 41, 48, 51, 65 497 78, 216, 228

10 3 258 503 3, 26, 248

11 2 263 93 505 156, 174

15 1, 4, 7 265 42, 127 506

17 3, 5, 6 266 47 508 109

18 268 25, 61 511 10, 15, 31, 160, 202, 216

20 270 513 85, 175

21 271 58, 70 518 33, 45

22 1 273 519 79

23 5, 9 274 67, 99, 135 521 32, 48, 158, 168

25 3, 7 278 5 524 167

28 3, 9, 13 279 5, 10, 38, 40, 41, 59, 76, 80, 125 527 47, 123, 147, 152, 198, 239

29 2 281 93, 99 529 42, 114, 157

31 3, 6, 7, 13 282 532 1, 37

33 13 284 119 537 94

35 2 286 69, 73 540

36 287 71, 116, 125 543 16, 28, 58, 203, 235

39 4, 8, 14 289 21, 36, 84 545 122

41 3, 20 292 97 550

47 5, 14, 20, 21 294 551 135, 240

49 9, 12, 15, 22 295 48, 112, 123, 142, 147 553 39, 57, 94, 99, 109, 255, 258

52 3, 19, 21 297 5, 83, 103, 122, 137 556 153

55 24 300 559 34, 70, 148, 210

57 7, 22 302 41 561 71, 109, 155

58 19 305 102 564

60 313 79, 121 566 153

63 314 15 567

65 18, 32 316 135 569 77, 210

68 9, 33 319 36, 52, 129 570

71 6, 9, 18, 20, 35 321 31, 56, 76, 82, 155 574 13

73 25, 28, 31 322 67 575 146

79 9, 19 327 34, 152 577 25, 27, 231
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37



Table D.1 – Continued
N K N K N K
81 4, 16, 35 329 50, 54 582

84 332 123 583 130

87 13 333 2 585 121, 151, 157, 232

89 38 337 55, 57, 135, 139, 147 588

93 2 342 590 93

94 21 343 75, 135, 138, 159 593 86, 108, 119, 177

95 11, 17 345 22, 37, 106 594

97 6, 12, 33, 34 350 53 599 30, 210

98 11, 27 351 34, 55, 116, 134 601 201, 202

100 353 69, 95, 138, 143, 153, 173 607 105, 147, 273

103 9, 13, 30, 31 359 68, 117 609

105 362 63, 107 610 127

106 15 364 67 615 211, 232, 238

108 366 617 200

111 10, 49 367 21, 171 622 297

113 9, 15, 30 369 91, 110 623 68, 87, 128, 185, 230, 251, 296, 311

118 33, 45 370 139, 183 625 133, 156

119 8, 38 375 16, 64, 149, 182 628 223, 289

121 18 377 41, 75 631 307

123 2 378 633 101, 292

124 37 380 634 315

127 1, 7, 15, 30, 63 382 81 639 16, 88, 95, 179, 305

129 5, 31, 46 383 90, 108, 135 641 11, 36, 45, 95, 287

130 3 385 6, 24, 51, 54, 142, 159 642

132 386 83 646 249

134 57 390 647 5, 150, 215, 312

135 11, 16, 22 391 28, 31 649 37, 73, 171, 310, 321

137 21, 35, 57 393 7, 62, 91 650 3

140 394 135 652 93, 97

142 21 396 655 88, 192

145 52, 69 399 657

148 27 401 152, 170 658 55

150 404 189 662 297

151 3, 9, 15, 31, 39, 43, 46, 51, 63, 66, 67, 70 406 157 663 257, 307

153 1, 8 407 71, 105 665 33, 53, 144, 192, 269, 317

159 31, 34, 40 409 87 670 153, 273

161 18, 39, 60 412 147 671 15, 201, 243

167 6, 35, 59, 77 415 102, 163 673 28, 183, 252, 259, 300

169 34, 42, 57, 84 417 107, 113, 155 676 241, 277

170 23 422 149 679 66, 216

172 7 423 25 686 197

174 425 12, 21, 42, 66, 111, 191 687 13, 133

175 6, 16, 18, 57 428 105 689 14, 87, 179, 207, 336

177 8, 22, 88 431 120, 200 692 299

178 87 433 33, 61, 118, 153 695 212

183 56 436 165 697 267, 310

185 24, 41, 69 438 698 215, 311

191 9, 18, 51, 71 439 49, 133, 145, 156, 171 702

193 15, 73, 85 441 705 19, 161, 194, 266, 328, 331

194 87 446 105, 153 708

198 447 73, 83 711 92
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Table D.1 – Continued
N K N K N K

199 34, 67 449 134, 167 713 41, 297

201 14, 17, 59, 79 450 714

202 55 455 38, 62, 74 716 183, 275

207 43 457 16, 61, 123, 210, 217, 226 719 150, 174, 257, 299, 314

209 6, 8, 14, 45, 47, 50, 62 458 203 721 9, 159, 256, 270, 283, 328

212 105 460 722 231

215 23, 51, 63, 77, 101 462 726

217 45, 64, 66, 82, 85 463 93, 168, 214 727 180, 217, 357

218 11, 15, 71, 83 465 729 58, 253

223 33, 34, 64, 70, 91 470 149, 177 730 147

225 32, 74, 88, 97, 109 471 1, 119, 127 735

231 474 737 5, 303

233 74 476 15, 141 738

234 478 121 740

236 5 479 104, 105, 122, 158, 224 743 90, 144, 146, 209, 210, 239, 279, 326

239 36, 81 481 138, 201, 231 745 258, 336, 342

241 70 484 105 746 351

247 82, 102 487 94, 127
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APPENDIX E. PRIMITIVE ROW THREE PASCAL
POLYNOMIALS

This appendix presents all primitive row three Pascal polynomials of degree four to
750. The polynomials have the form xN + (xA + 1)3. If there are multiple values in the A
cell, then each choice of A for the corresponding N is a primitive polynomial.

Table E.1: Primitive row three Pascal polynomials of degree
4 to 750.

N A N A N A
5 1 217 15, 22, 44, 45, 51 463 31, 56, 83
7 1, 2 223 11, 44, 51, 53, 63 479 35, 85, 107, 119, 125

11 3 233 53 481 46, 67, 77
17 1, 2, 4 239 12, 27 487 120, 131
23 3, 6 241 57 497 26, 72, 76
25 1, 6 247 34, 55 503 1, 85, 159
29 9 257 4, 16, 17, 64, 72 505 52, 58
31 1, 2, 6, 8 263 31 511 5, 72, 103, 117, 160, 167
35 11 265 14, 46 521 16, 56, 121, 163
41 1, 7 271 67, 71 527 41, 49, 66, 96, 125, 160
47 7, 9, 11, 14 281 31, 33 529 14, 38, 124
49 3, 4, 5, 9 287 54, 57, 72 545 141
55 8 289 7, 12, 28 551 45, 80
65 6, 11 295 16, 41, 49, 51, 61 553 13, 19, 33, 85, 86, 148, 153
71 2, 3, 6, 12, 17 305 34 559 70, 137, 163, 175
73 14, 15, 16 313 64, 78 569 70, 164
79 3, 20 319 12, 43, 89 575 143
89 17 329 18, 93 577 9, 77, 184
95 26, 28 337 19, 45, 49, 66, 94 583 151
97 2, 4, 11, 21 343 25, 45, 46, 53 593 36, 59, 158, 169
103 3, 10, 24, 30 353 23, 46, 51, 60, 70, 86 599 10, 70
113 3, 5, 10 359 39, 97 601 67, 133
119 27, 37 367 7, 57 607 35, 49, 91
121 6 377 25, 112 617 139
127 5, 10, 21, 40, 42 383 30, 36, 45 623 29, 104, 109, 124, 131, 146, 165, 185
137 7, 19, 34 385 2, 8, 17, 18, 53, 81 625 52, 164
145 23, 31 391 120, 121 631 108
151 1, 3, 5, 13, 17, 21, 22, 27, 28, 35, 36, 40 401 77, 83 641 12, 15, 118, 182, 210
161 6, 1 3, 20 407 35, 112 647 50, 104, 144, 214
167 2, 30, 36, 44 409 29 649 57, 107, 113, 192, 204
169 14, 19, 28, 45 415 34, 84 655 64, 189
175 2, 6, 19, 53 425 4, 7, 14, 22, 37, 78 665 11, 48, 64, 116, 132, 204
185 8, 23, 48 431 40, 77 671 5, 67, 81
191 3, 6, 17, 40 433 11, 51, 105, 124 673 61, 84, 100, 138, 215
193 5, 36, 40 439 52, 57, 98, 102, 130 679 22, 72
199 44, 55 449 94, 105 689 29, 69, 112, 170, 225
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Table E.1 – Continued
N A N A N A

209 2, 15, 49, 53, 54, 65, 67 455 127, 131, 139 695 161
215 17, 21, 38, 46, 64 457 41, 70, 77, 80, 132, 147 697 89, 129
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APPENDIX F. PRIMITIVE ROW FIVE PASCAL POLYNOMIALS

This appendix presents all primitive row five Pascal polynomials of degree six to
750. The polynomials have the form xN + (xA + 1)5. If there are multiple values in the A
cell, then each choice of A for the corresponding N is a primitive polynomial.

Table F.1: Primitive row five Pascal polynomials of degree 6
to 750.

N A N A N A
6 1 258 35 471 94
9 1 263 34 474 43

17 1 271 14 479 21, 51, 75
23 1 273 22, 32, 37, 44, 50 481 50, 56
31 5 274 27, 35 487 72
33 4 278 1 503 51, 100
39 5, 7 279 1, 2, 8, 16, 25, 44 506 19, 27
41 4 282 7 511 2, 3, 32, 59, 96
47 1, 4 287 25 513 17, 35
49 3, 8 289 41 518 9, 97
57 7, 10 297 1, 32, 35 519 88
63 1 314 3 527 75, 76, 96
71 4, 7, 13 319 38 529 83
73 5, 9 321 31, 49, 53, 58 543 47, 68, 97, 103
79 12, 14 322 51 551 27, 48
81 7, 13 327 35 553 51, 59
97 17 329 10, 55 559 14, 42, 105
103 6, 18 337 11, 27, 38, 56 561 31, 98
106 3 342 25 567 55
111 2 343 15, 27, 41 569 42
113 3, 6 351 11, 47 577 5, 110
118 9, 17 353 19, 36, 40, 42, 43 582 17
127 3, 6, 24 362 51 583 26
129 1 369 22 593 97
137 7, 16 377 15 594 7, 115
151 3, 14, 17, 20, 21, 24 378 67 599 6, 42
153 29 383 18, 27, 55 601 80
159 8, 25 391 72 607 21, 92
161 12 394 27 617 40
167 7, 18 399 58 622 65
169 17, 27 401 34 623 37, 46, 99, 111
177 31 407 21 634 63
191 24, 28 417 31, 62 639 19, 61, 92
193 3, 17, 24 423 5 641 9, 19, 121, 126
198 13 431 24, 40 647 1, 30, 43, 67
199 33 433 56, 63, 80 649 62
202 11 438 13 657 113
209 9, 10, 39 439 29, 78 658 11
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Table F.1 – Continued
N A N A N A

217 9, 17, 27 441 82 662 73
218 3, 27 446 21 671 3, 94
223 14, 38 449 63 673 60, 98, 129
231 41 457 42, 48 689 102, 135
241 14 458 51 697 62, 86
247 29, 33 463 59, 74 698 43
257 13, 49
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APPENDIX G. PRIMITIVE ROW SEVEN PASCAL
POLYNOMIALS

This appendix presents all primitive row seven Pascal polynomials of degree eight
to 750. The polynomials have the form xN + (xA + 1)7. If there are multiple values in the
A cell, then each choice of A for the corresponding N is a primitive polynomial.

Table G.1: Primitive row seven Pascal polynomials of degree
8 to 750.

N A N A N A
10 1 239 29 457 30, 31, 33, 63
17 2 241 10 458 29
22 3 250 21 460 57
23 2 257 35 463 24
25 1 265 6 478 51
31 1, 4 271 10 479 15, 32, 51
41 3 274 25 481 33, 40, 49
47 2, 3, 6 278 39 484 15
52 3, 7 281 26 494 51
68 5 284 17 506 53
71 5 286 31 508 57
73 4, 6 289 3, 12 521 24
79 10 295 16, 21 524 51
94 3 305 29 527 21, 47
95 12 337 21, 40 529 6
97 9, 13 353 30 550 51

100 9 362 9 559 10, 30, 75
106 13 367 3, 28 566 59
113 14 370 33 569 11, 30
127 1, 9, 16, 18 377 48 577 33
134 11 382 43 590 71
137 3, 5 391 4 593 17
142 3 394 37 599 30
151 9, 10, 12, 15, 16 401 33 601 57
167 5, 11, 23 404 27 607 15, 21, 39
169 6, 12, 16 407 15, 48 610 69
170 21 409 46 625 19, 67
172 1 412 21 634 45
178 13 415 36 641 41, 78, 90
185 23 422 39 647 71
191 20, 26 425 3, 6, 59 655 81
202 21 428 15 670 39
209 2, 21, 29 431 33 673 4, 36, 37, 70
212 15 433 40, 45 676 57
215 9, 11 439 7, 19, 42 689 2, 48, 86
218 21, 29 446 15 695 69
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Table G.1 – Continued
N A N A N A

223 10, 13, 27 449 45 698 69
236 33

46



APPENDIX H. PRIMITIVE ROW NINE PASCAL POLYNOMIALS

This appendix presents all primitive row nine Pascal polynomials of degree ten to
750. The polynomials have the form xN + (xA + 1)9. If there are multiple values in the A
cell, then each choice of A for the corresponding N is a primitive polynomial.

Table H.1: Primitive row nine Pascal polynomials of degree
10 to 750.

N A N A N A
11 1 209 5, 18 439 19, 34
23 1, 2 215 7 449 35
25 2 217 5, 15, 17 457 44, 49
29 3 223 17, 21 487 40
31 2 239 4, 9 497 24
47 3 241 19 503 53
49 1, 3 257 24 511 24, 39
65 2 281 11 527 22, 32
71 1, 2, 4 287 18, 19, 24 545 47
73 5 289 4 551 15
79 1 295 17 553 11, 51
97 7 313 26 577 3

103 1, 8, 10 319 4 593 12
113 1 329 6, 31 623 55
119 9 337 15, 22 631 36
121 2 343 15 641 4, 5, 70
127 7, 14 353 17, 20 647 48
151 1, 7, 9, 12 359 13 649 19, 64, 68
161 2 367 19 655 63
167 10, 12 383 10, 12, 15 665 16, 44, 68
169 15 385 6, 27 671 27
175 2 391 40 673 28, 46
185 16 415 28 679 24
191 1, 2 425 26 689 23, 75
193 12 433 17, 35 697 43
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APPENDIX I. PRIMITIVE ROW ELEVEN PASCAL
POLYNOMIALS

This appendix presents all primitive row eleven Pascal polynomials of degree twelve
to 750. The polynomials have the form xN + (xA + 1)11. If there are multiple values in the
A cell, then each choice of A for the corresponding N is a primitive polynomial.

Table I.1: Primitive row eleven Pascal polynomials of degree
12 to 750.

N A N A N A
15 1 215 7 447 34
17 1 217 6, 12 457 21, 36
18 1 218 1 471 32
25 2 223 3, 12 478 11
35 3 225 8 479 34
36 1 236 21 481 21
47 3 247 15 518 3, 43
49 2 257 19 519 40
52 3 273 8, 10, 20 521 33, 43
57 2 274 9 527 18
65 3 279 14, 20 532 45
68 3 281 9 543 28
81 7 284 15 553 9
95 1 289 23 567 13, 25
97 3 313 11 569 7
98 1 329 25 574 51
105 8 332 19 575 39
108 7 337 5, 18 577 21, 50
118 3 345 2, 28 585 11
123 11 351 5 588 23
134 7 353 13 622 27
135 1, 2 359 22 623 45
142 11 364 27 633 31
148 11 369 10 634 29
151 6, 8 383 25 639 8
161 13 391 33 641 1, 55
167 7, 12 401 21 655 8
172 15 425 6 658 5
177 2, 8 431 21 662 27
199 12, 15 433 3 665 3, 36, 43
201 17 436 15 679 6
202 5 446 31
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